Selenium Coronands: Synthesis and Conformational Analysis ${ }^{1}$

Raymond J. Batchelor, Frederick W. B. Einstein, Ian D. Gay, Jian-Hua Gu, Blair D. Johnston, and B. Mario Pinto*
Contribution from the Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6. Received September 8, 1988

Abstract

The synthesis and characterization of the novel selenium coronands 1,3,7,9-tetraselenacyclododecane (1a), 1,3,7,9,13,15-hexaselenacyclooctadecane (2a), the corresponding β-gem-dimethyl derivatives $\mathbf{1 b}$ and $\mathbf{2 b}, 1,5,9,13$-tetraselenacyclohexadecane (3), 1,5,9,13,17,21-hexaselenacyclotetracosane (4), and 1,4,8,11-tetraselenacyclotetradecane (5) are described. X-ray crystallographic analysis of 1a reveals two distinct quadrangular conformations ([3333] and [66]) in both of which selenium atoms occupy alternate corner and side positions. 1a: $\mathrm{Se}_{4} \mathrm{C}_{8} \mathrm{H}_{16} ; \mathrm{fw}=428.05$; space group $P 2_{1} / c ; \boldsymbol{Z}=8 ; T=200$ $\mathrm{K} ; a=15.823$ (2) $\AA ; b=5.534$ (1) $\AA ; c=27.962(5) \AA ; \beta=92.26(1)^{\circ} ; V=2446.6 \AA^{3} ; R_{\mathrm{f}}=0.027$ for 2162 observed data. In contrast, DNMR studies in $\mathrm{CFCl}_{3} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$ (85:15) or $\mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}$ (85:15) show that the preferred conformation in solution of 1 a and its $5,5,11,11$-tetramethyl analogue $\mathbf{1 b}$ is a [3333] quadrangle with the selenium atoms occupying only side positions. Pseudorotational barriers of 6.0 and $7.6 \mathrm{kcal} \mathrm{mol}^{-1}$ are calculated for $\mathbf{1 a}$ and $\mathbf{1 b}$, respectively. Compound $\mathbf{2 a}$ crystallizes in a unique irregular conformation dictated by gauche, gauche arrangements in the $\mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{Se}-\mathrm{C}$ fragments. Bond angle and torsion angle data, together with ${ }^{2} J^{7}{ }^{7} \mathrm{se}-{ }^{7} \mathrm{se}$ coupling constants in the solid-state CP-MAS ${ }^{71} \mathrm{Se}$ NMR spectrum, provide evidence for selenium anomeric ($n_{\mathrm{se}}-\sigma^{*} \mathrm{c}$-se) interactions. 2a: $\mathrm{Se}_{6} \mathrm{C}_{12} \mathrm{H}_{24} ; \mathrm{fw}=642.08$; space group $P 2_{1} / c ; Z=4 ; T=190 \mathrm{~K} ; a=$ 20.154 (3) $\AA ; b=5.4292$ (9) $\AA ; c=17.678$ (3) $\AA ; \beta=110.66$ (1) ${ }^{\circ} ; V=1810.0 \AA^{3} ; R_{\mathrm{f}}=0.024$ for 2426 observed data. The best structural model for 3 , though not definitive, contains two ordered and one disordered molecule which are all [3535] quadrangles with selenium atoms in alternate corner and side positions on the long sides. 3 : $\mathrm{Se}_{4} \mathrm{C}_{12} \mathrm{H}_{24}$; $\mathrm{fw}=484.16$; space group $C c ; Z=12 ; T=160 \mathrm{~K} ; a=21.975$ (5) $\AA ; b=18.073$ (4) $\AA ; c=16.431$ (7) $\AA ; \beta=132.16$ (2) ${ }^{\circ} ; V=4837.3 \AA^{3} ; R_{\mathrm{f}}$ $=0.070$ for 2079 observed data. The structure of 4 contains a single conformer which, while not being quadrangular, can be visualized as arising from the compression of a [4848] quadrangle. 4: $\mathrm{Se}_{6} \mathrm{C}_{18} \mathrm{H}_{36} ; \mathrm{fw}=726.24$; space group $P 1 ; Z=1$; $T=195 \mathrm{~K} ; a=5.279$ (3) $\AA ; b=8.498$ (3) $\AA ; c=14.224$ (5) $\AA ; \alpha=73.38(3)^{\circ} ; \beta=82.22(4)^{\circ} ; \gamma=88.85(4)^{\circ} ; R_{\mathrm{f}}=0.041$ for 1189 observed data. 5 crystallizes as a [3434] quadrangle with selenium atoms at the corners. $5: \mathrm{Se}_{4} \mathrm{C}_{10} \mathrm{H}_{20} ; \mathrm{fw}=456.11$; space group $P 2_{1} / c ; Z=2 ; T=195 \mathrm{~K} ; a=5.4494$ (6) $\AA ; b=15.875$ (2) $\AA ; c=9.4666(8) \AA ; \beta=119.839(8){ }^{\circ} ; V=710.37$ $\AA^{3} ; R_{\mathrm{f}}=0.023$ for 1085 observed data. The solid-state CP-MAS ${ }^{13} \mathrm{C}$ and ${ }^{7 /}$ Se NMR spectra are in accord with the observed structures. The structural results show that there is a marked preference for gauche torsion angles about $\mathrm{Se}-\mathrm{C}$ bonds as well as a further bias toward gauche torsion angles in the $\mathrm{Se}-\mathrm{C}-\mathrm{Se}-\mathrm{C}$ fragments. The latter is evidence for a selenium anomeric effect.

The study of synthetic ionophores such as crown ethers, coronands, cryptands, and podands is of current interest ${ }^{2}$ from a structural viewpoint as well as a means of modeling the more complex natural host-guest complexes present in antibiotics and membrane transport systems. Macrocyclic polyoxa ethers (the crown ethers) have been extensively studied, and investigation of the corresponding polythia ethers is also well documented. ${ }^{3}$ For example, Rorabacher, Ochrymowycz, and co-workers ${ }^{4}$ pioneered work on the synthesis and investigation of the sulfur ligands and their copper complexes. More recently, Cooper and co-workers ${ }^{3,5}$ have made significant advances in the synthesis, conformational analysis, and coordination chemistry of macrocyclic polythia ethers. In particular, the relative stabilities of metal complexes have been linked to the degree of necessary conformational change from that of the uncomplexed ligands. ${ }^{3}$

Surprisingly, extension of this type of chemistry to the corresponding third-row analogues is virtually unknown. To the best of our knowledge, the only large-ring selenides reported to date are cyclic oligomers of selenaformaldehyde, ${ }^{6}$ diselenacyclophanes, ${ }^{7}$ macrocyclic diselena ethers, ${ }^{76}$ and a selenium porphyrin derivative. ${ }^{8}$

Our interest in selenium coronands arose from the serendipitous finding that reaction of sodium propane-1,3-bis(selenolate) in liquid ammonia and THF with dibromomethane gave, in addition to 1,3-diselenane, significant amounts of macrocyclic polyselena ethers. This result, together with the findings of Cooper et al. ${ }^{9}$ that sulfur coronands possessed conformations that differed significantly from those of their oxygen counterparts and yielded metal complexes with unexpected electronic structures and redox properties, prompted us to investigate this route to selenium coronands in greater detail. We expected that the latter derivatives would preferentially bind softer metal ions. ${ }^{10}$

[^0]Scheme I

14
in
$R=H$
$R=C H$$\quad 8 z$ $+\underset{\substack{c_{2} \\ 20}}{\substack{S_{0} \\ 20}}$

We report herein the synthesis and conformational analysis of the first examples of a novel class of selenium coronands, namely,

[^1]1,3,7,9-tetraselenacyclododecane (1a), 1,3,7,9,13,15-hexaselenacyclooctadecane (2a), the corresponding β-gem-dimethyl derivatives $\mathbf{1 b}$ and 2b, 1,5,9,13-tetraselenacyclohexadecane (3), 1,5,9,13,17,21-hexaselenacyclotetracosane (4), and 1,4,8,11-tetraselenacyclotetradecane 5 (Scheme I).

Experimental Section

General Information. Melting points were determined on a FisherJohns melting-point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (400.13 MHz), ${ }^{13} \mathrm{C}$ NMR (100.6 MHz), and ${ }^{77} \mathrm{Se}$ NMR (76.3 MHz) spectra were recorded on a Bruker WM-400 NMR spectrometer. For the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, chemical shifts are given in ppm downfield from SiMe_{4}. Chemical shifts and coupling constants were obtained from a first-order analysis of the spectra. For the ${ }^{77} \mathrm{Se}$ NMR spectra chemical shifts are given in ppm downfield from $\mathrm{Me}_{2} \mathrm{Se}$ in CDCl_{3}. The temperatures were measured in the following manner: Peak separations of the ${ }^{1} \mathrm{H}$ NMR signals from a standard methanol sample were converted into temperature values by using the quadratic equation of Van Geet, ${ }^{11}$ scaled to $400 \mathrm{MHz},{ }^{12}$ and a calibration curve for the probe thermocouple was constructed. The temperatures were obtained from the above curve by extrapolation. Temperatures are believed to be accurate to $\pm 2 \mathrm{~K}$.

Solid-state NMR spectra were recorded on an instrument (built inhouse) operating at a field of 1.4 T . This produces resonance frequencies of 11.4 and 15.1 MHz for ${ }^{77} \mathrm{Se}$ and ${ }^{13} \mathrm{C}$, respectively. Spectra were excited by using single-contact Hartmann-Hahn cross polarization. The matched radio frequency field strengths were 40 and 50 kHz for ${ }^{77} \mathrm{Se}$ and ${ }^{13} \mathrm{C}$, respectively. The same field strength was used for proton decoupling during data acquisition. Samples were spun at the magic angle at frequencies of $2-3 \mathrm{kHz}$. The magic angle was correctly set within $\pm 0.1^{\circ}$ by optimizing the line width on well-crystallized samples of $\left(t-\mathrm{Bu}_{2} \mathrm{Sn}\right)_{2} \mathrm{Se}_{2}$ and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Chemical shifts were measured relative to long cylindrical samples of aqueous $\mathrm{H}_{2} \mathrm{SeO}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$. These were converted to shifts based on the standard $\mathrm{Me}_{2} \mathrm{Se}$ and TMS scales by using literature data.

Chemical ionization mass spectra were measured on a HewlettPackard HP-5985 mass spectrometer with isobutane as the reacting gas.

Analytical TLC was performed on precoated aluminum plates with Merck silica gel 60F-254 as the absorbent. The developed plates were air dried, exposed to UV light and/or sprayed with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ in ethanol, and heated to $100^{\circ} \mathrm{C}$. Flash column chromatography was performed on Kieselgel 60 (230-400 mesh). ${ }^{13}$

Solvents were distilled before use and were dried, as necessary, by literature procedures. Reactions were performed under nitrogen by use
(4) For example: Rorabacher, D. B.; Martin, M. J.; Koenigbauer, M. J.; Malik, M.; Schroeder, R. R.; Endicott, J. F.; Ochrymowycz, L. A. In Copper Coordination Chemistry: Biochemical and Inorganic Perspectives; Karlin, K. D., Zubieta, J., Eds.; Adenine Press: Guilderland, NY, 1983; p 167. Young, I. R.; Ochrymowycz, L. A.; Rorabacher, D. B. Inorg. Chem. 1986, 25, 2576; Diaddario, Jr., L. L.; Dockal, E. R.; Glick, M. D.; Ochrymowycz, L. A.; Rorabacher, D. B. Ibid. 1985, 24, 356. Pett, V. B.; Diaddario, Jr., L. L.; Dockal, E. R.; Corfield, P. W.; Ceccarelli, C.; Glick, M. D.; Ochrymowycz, L. A.; Rorabacher, D. B. Ibid. 1983, 22, 3661. Corfield, P. W. R.; Ceccarelli, C.; Glick, M. D.; Wei-Yu Moy, I.; Ochrymowycz, L. A.; Rorabacher, D. B. J. Am. Chem. Soc. 1985, 107, 2399.
(5) Rawle, S. C.; Cooper, S. R. J. Chem. Soc., Chem. Commun. 1987, 308. Rawle, S. C.; Hartman, J. R.; Watkin, D. J.; Cooper, S. R. Ibid. 1986, 1083. Hartman, J. R.; Hintsa, E. J.; Cooper, S. R. Ibid. 1984, 386. Hintsa, E. J.; Hartman, J. R.; Cooper, S. R. J. Am. Chem. Soc. 1983, 105, 3738. Hartman, J. R.; Cooper, S. R. Ibid. 1986, 108, 1202. Hartman, J. R.; Hintsa, E. J.; Cooper, S. R. Ibid. 1986, 108, 1208. Cooper, S. R.; Rawle, S. R.; Hartman, J. R.; Hintsa, E. J.; Admans, G. A. Inorg. Chem. 1988, 27, 1209.
(6) Weissflog, V. E. Z. Anorg. Allg. Chem. 1982, 488, 60.
(7) (a) Higuchi, H.; Misumi, S. Tetrahedron Lett. 1982, 23, 5571. (b) Higuchi, H.; Tani, K.; Otsubo, T.; Sakata, Y.; Misumi, S. Bull. Chem. Soc. Jpn. 1987, 60, 4027. (c) Mitchell, R. H. Can. J. Chem. 1980, 58, 1398. (d) Mitchell, R. H.; Weerawarna, K. S.; Bushnell, G. W. Tetrahedron Lett. 1987, 28, 5119. (e) Mitchell, R. H.; Weerawarna, K. S. Tetrahedron Lett. 1988, 29, 5587.
(8) Ulman, A.; Manassen, J.; Frolow, F.; Rabinovich, D. Tetrahedron Lett. 1978, 167.
(9) For example: Wolf, R. E. Jr.; Hartman, J. R.; Storey, J. M. E.; Foxman, B. M.; Cooper, S. R. J. Am. Chem. Soc. 1987, 109, 4328.
(10) The synthesis of acyclic oligoselena ethers and their complexes with transition metals has been reported: Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. J. Chem. Soc., Perkin Trans. 2 1984, 429, and references therein. Hope, E. G.; Levason, W.; Murray, S. G.; Marshall, G. L. J. Chem. Soc., Dalton Trans. 1985, 2185.
(11) Van Geet, A. L. Anal. Chem. 1970, 42, 679.
(12) For example: Raiford, D. S.; Fisk, C. L.; Becker, E. D. Anal. Chem. 1979, 51, 2050.
(13) Still, W. C.; Kahn, M.; Mitra, M. J. Org. Chem. 1978, 43, 2923.

Table I. Physical Data for 1-6

compd	yield, \%	mp or $\mathrm{bp},{ }^{\circ} \mathrm{C}$	formula	anal. calcd (found)	
				C	H
1a	10	$136-137$ (hexane)	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{Se}_{4}$	22.45 (22.53)	3.77 (3.80)
1b	8	$174-176$ (hexane)	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Se}_{4}$	29.77 (29.64)	5.00 (5.01)
2a	5	$57-58$ (hexane)	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Se}_{6}$	22.45 (22.51)	3.77 (3.61)
2b	4	107-108 (hexane)	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{Se}_{6}$	29.77 (29.81)	5.00 (5.10)
3	40	$\begin{aligned} & 59-60 \\ & \text { (hexane/EtOAc) } \end{aligned}$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Se}_{4}$	29.77 (29.63)	5.00 (4.95)
4	15	$\begin{aligned} & 39-40 \\ & \text { (hexane/EtOAc) } \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{Se}_{6}$	29.77 (29.63)	5.00 (4.97)
5	36	$\begin{aligned} & 145-146 \\ & (\mathrm{EtOAc}) \end{aligned}$	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{Se}_{4}$	26.13 (26.34)	4.38 (4.55)
6	17	$\begin{aligned} & 100-110 \\ & (0.1 \mathrm{mmHg}) \end{aligned}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Se}_{2}$	29.77 (29.64)	5.00 (4.85)

of standard Schlenk tube techniques.
Microanalyses were performed by M. K. Yang of the Microanalytical Laboratory of Simon Fraser University.

Synthesis. Typical Preparation. To propane-1,3-bis(selenocyanate) ($2.53 \mathrm{~g}, 10.0 \mathrm{mmol}$) in liquid ammonia (100 mL) and dry THF (40 mL) was added Na metal in small pieces until a colorless homogeneous solution was obtained. A solution of 1,3-dibromopropane ($1.1 \mathrm{~mL}, 11 \mathrm{mmol}$) in dry THF (60 mL) was added dropwise over 3.5 h . The ammonia was allowed to escape over 3 h , and the reaction mixture was diluted to 500 mL with water and extracted with methylene chloride $(3 \times 100 \mathrm{~mL})$. The combined extracts were washed with water (100 mL), dried (MgS O_{4}), and concentrated in vacuo to yield a light orange oil which slowly partially crystallized. Purification by silica gel flash chromatography (hexane:ethyl acetate (20:1)) yielded 1,5-diselenacyclooctane (6) as a colorless oil $(0.407 \mathrm{~g}, 17 \%), 3$ as a colorless solid $(0.963 \mathrm{~g}, 40 \%)$, and 4 as a colorless solid ($0.351 \mathrm{~g}, 15 \%$).

Details for the preparation of compounds $\mathbf{1 a}, \mathbf{1 b}, \mathbf{2 a}, \mathbf{2 b}$, and 5 are presented in the Results.

Spectroscopic Data. Mass Spectra. The isobutane chemical ionization mass spectra of $1-6$ exhibited $M^{+}+1$ molecular ion isotopic clusters which correlated with the computer-simulated molecular ion patterns for the respective molecular formulas.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$). 1a: $\delta 2.07\left(4 \mathrm{H}, 2 \beta-\mathrm{CH}_{2}\right.$'s, pentet, $\left.J=7.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{Se}}=7.0 \mathrm{~Hz}\right), 2.86\left(8 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J=7.1 \mathrm{~Hz}\right), 3.70$ $\left(4 \mathrm{H}, 2-\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{s},{ }^{2} J_{\mathrm{H}-\mathrm{Se}}=13.6 \mathrm{~Hz}\right)$. 1b: $\delta 1.11\left(12 \mathrm{H}, 4-\mathrm{CH}_{3}, \mathrm{~s}\right)$, $2.96\left(8 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2}\right.$'s, s), $3.65\left(4 \mathrm{H}, 2-\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{s},{ }^{2} J_{\mathrm{H}-\mathrm{Se}}=17.3 \mathrm{~Hz}\right)$. 2a: $\delta 2.11\left(6 \mathrm{H}, 3 \beta-\mathrm{CH}_{2}\right.$'s, pentet, $\left.J=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{Se}}=7.0 \mathrm{~Hz}\right), 2.81$ $\left(12 \mathrm{H}, 6 \alpha-\mathrm{CH}_{2}\right.$'s, t, $\left.J=7.0 \mathrm{~Hz}\right), 3.69\left(6 \mathrm{H}, 3-\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{s},{ }^{2} J_{\mathrm{H}-\mathrm{Se}}=13.7\right.$ Hz). 2b: $\delta 1.09\left(18 \mathrm{H}, 6 \mathrm{CH}_{3}, \mathrm{~s}\right), 2.81\left(12 \mathrm{H}, 6 \alpha-\mathrm{CH}_{2}\right.$'s, s), 3.68 (4 $\left.\mathrm{H}, 3-\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{s},{ }^{2} J_{\mathrm{H}-\mathrm{Se}}=14.5 \mathrm{~Hz}\right)$. 3: $\delta 2.06\left(8 \mathrm{H}, 4 \beta-\mathrm{CH}_{2}\right.$'s, pentet, $\left.J=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{Se}}=7.0 \mathrm{~Hz}\right), 2.70\left(16 \mathrm{H}, 8 \alpha-\mathrm{CH}_{2}{ }^{\prime} \mathrm{s}, \mathrm{t}, J=7.0 \mathrm{~Hz}\right.$, $\left.{ }^{2} J_{\mathrm{H}-\mathrm{se}}=11.0 \mathrm{~Hz}\right) .4: \delta 2.03\left(12 \mathrm{H}, 6 \beta-\mathrm{CH}_{2}\right.$'s, pentet, $J=7.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{se}}$ $=7.0 \mathrm{~Hz}), 2.69\left(24 \mathrm{H}, 12 \alpha-\mathrm{CH}_{2}\right.$'s, $\left., J=7.0 \mathrm{~Hz},{ }^{2} J_{\mathrm{H}-\mathrm{Se}}=11.0 \mathrm{~Hz}\right)$. 5: $\delta 2.10\left(4 \mathrm{H}, 2 \beta-\mathrm{CH}_{2} ’ \mathrm{~s}, \mathrm{~m}\right), 2.68\left(8 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2}\right.$'s, dd, $J=15.7 \mathrm{~Hz}$), $2.91\left(8 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2}\right.$'s, $\left.J_{\mathrm{H}-\mathrm{Se}}=9 \mathrm{~Hz}\right) . \quad$ 6: $\delta 2.24\left(4 \mathrm{H}, 2 \beta-\mathrm{CH}_{2}\right.$'s, m), 2.88 ($8 \mathrm{H}, 4 \alpha-\mathrm{CH}_{2}$'s, m).
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. 1a: $\delta 13.0\left(\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=154\right.$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=87 \mathrm{~Hz}\right), 25.5\left(\alpha-\mathrm{CH}_{2}\right.$'s, t, $\left.J_{\mathrm{C}-\mathrm{H}}=140 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=63 \mathrm{~Hz}\right)$, $29.3\left(\beta-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=129 \mathrm{~Hz}\right)$. 1b: $\delta 15.8\left(\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=154\right.$ $\left.\mathrm{Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=85 \mathrm{~Hz}\right), 30.0\left(\mathrm{CH}_{3}, \mathrm{q}, J_{\mathrm{C}-\mathrm{H}}=123 \mathrm{~Hz}\right), 35.4(\beta-\mathrm{C}$'s, s$), 38.6$ $\left(\alpha-\mathrm{CH}_{2}\right.$'s, $\left.\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=142 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=78 \mathrm{~Hz}\right), 2 \mathrm{a}: \delta 14.0\left(\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{t}\right.$, $\left.J_{\mathrm{C}-\mathrm{H}}=154 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=83 \mathrm{~Hz}\right), 26.1\left(\alpha-\mathrm{CH}_{2}\right.$'s, $\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=142 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}$ $=63 \mathrm{~Hz}), 30.7\left(\beta-\mathrm{CH}_{2}\right.$'s, $\left.\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=129 \mathrm{~Hz}\right) .2 \mathrm{~b}: \delta 17.1\left(\mathrm{SeCH}_{2} \mathrm{Se}, \mathrm{t}\right.$, $\left.J_{\mathrm{C}-\mathrm{H}}=153 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=85 \mathrm{~Hz}\right), 27.9\left(\mathrm{CH}_{3}, \mathrm{q}, J_{\mathrm{C}-\mathrm{H}}=123 \mathrm{~Hz}\right), 36.2$ $(\beta-\mathrm{C} ' \mathrm{~s}, \mathrm{~s}), 40.2\left(\alpha-\mathrm{CH}_{2}\right.$'s, t, $\left.J_{\mathrm{C}-\mathrm{H}}=141 \mathrm{~Hz}{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=65 \mathrm{~Hz}\right) .3: \delta 23.7$ $\left(\alpha-\mathrm{CH}_{2}\right.$'s, $\left.\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=141 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=63 \mathrm{~Hz}\right), 31.8\left(\beta-\mathrm{CH}_{2}\right.$'s, $\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=$ $129 \mathrm{~Hz})$. 4: $\delta 23.7\left(\alpha-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=140 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=63 \mathrm{~Hz}\right), 31.4$ $\left(\beta-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=129 \mathrm{~Hz}\right) .5: \delta 23.2\left(\alpha-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J=143 \mathrm{~Hz}\right), 23.4$ $\left(\alpha-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J=140 \mathrm{~Hz}\right), 32.3\left(\beta-\mathrm{CH}_{2}\right.$'s, $\left.\mathrm{t}, J=130 \mathrm{~Hz}\right)$. 6: $\delta 23.3$ $\left(\alpha-\mathrm{CH}_{2} ' \mathrm{~s}, \mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=140 \mathrm{~Hz},{ }^{1} J_{\mathrm{C}-\mathrm{Se}}=66 \mathrm{~Hz}\right), 30.9\left(\beta-\mathrm{CH}_{2}\right.$'s, $\mathrm{t}, J_{\mathrm{C}-\mathrm{H}}=$ 127 Hz).
${ }^{77} \mathrm{Se}$ NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1a, $\delta 192 ; \mathbf{1 b}, \delta 145 ; \mathbf{2 a}, \delta 203 ; \mathbf{2 b}, \delta$ 154; 3, $\delta 157 ; 4, \delta 153 ; 5, \delta 215 ; 6, \delta 137$.

X-ray Crystallography. All crystals were mounted on Pyrex filaments by using epoxy resin. Measurements were made with an Enraf-Nonius CAD-4F diffractometer equipped with an extensively in-house-modified low-temperature attachment and using graphite-monochromatized radiation. Experimental details of the structure determinations of 1a, 2a, 4 , and 5 are summarized in Table II (3 is discussed separately (see

Table II. Experimental Details for the Structure Determinations of Selenium Coronands 1a, 2a, 4, and 5

	1a	2a	4	5	
formula	$\mathrm{Se}_{4} \mathrm{C}_{8} \mathrm{H}_{16}$	$\mathrm{Se}_{6} \mathrm{C}_{12} \mathrm{H}_{24}$	$\mathrm{Se}_{6} \mathrm{C}_{18} \mathrm{H}_{36}$	$\mathrm{Se}_{4} \mathrm{C}_{10} \mathrm{H}_{20}$	
cryst system	monoclinic	monoclinic	triclinic	monoclinic	
space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	
temp, K	200	190	195	195	
unit cell					
no. of reflctns/ θ range, deg	25/16.0-19.9	25/17.0-22.3	21/15.1-18.4	25/19.9-22.0	
a, \AA	15.823 (2)	20.154 (3)	5.279 (3)	5.4494 (6)	
b, \AA	5.534 (1)	5.4292 (9)	8.498 (3)	15.875 (2)	
c, \AA	27.962 (5)	17.678 (3)	14.224 (4)	9.4666 (8)	
α, deg			73.38 (3)		
β, deg	92.26 (1)	110.66 (1)	82.22 (4)	119.839 (8)	
γ, deg			88.85 (4)		
V, \AA^{3}	2446.6	1810.0	605.7	710.37	
Z	8	4	1	2	
fw	428.05	642.08	726.24	456.11	
$\rho_{\mathrm{e}}, \mathrm{g} \mathrm{cm}^{-3}$	2.324	2.370	1.991	2.1324	
$\mu\left(\mathrm{M} \circ \mathrm{K} \alpha\right.$) , cm^{-1}	118.3	120.0	89.74	101.96	
cryst size, mm	$0.11 \times 0.21 \times 0.48$	$0.10 \times 0.21 \times 0.55$	$0.015 \times 0.23 \times 0.35$	$0.10 \times 0.15 \times 0.40$	
λ, \AA	0.71069	0.71069	0.71069	0.71069	
transmission ${ }^{\text {a }}$	0.075-0.330	0.083-0.330	0.337-0.947	0.235-0.441	
stds ${ }^{\text {b }}$ no./rep time, h	$2 / 1$	$2 / 1$	2/1	$2 / 1$	
scan mode	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$	$\omega-2 \theta$	
scan width, ${ }^{\text {c }}$ deg	$0.9+0.35 \tan \theta$	$0.9+0.35 \tan \theta$	$1.0+0.35 \tan \theta$	$0.98+0.35 \tan \theta$	
scan sp, ${ }^{d}$ deg min^{-1}	0.75-3.30	0.75-3.30	0.969-1.177	0.82-3.30	
min-max 2θ, deg	4-48	4-52	4-44	4-54	
unique rflctns	3797	3539	1475	1528	
obsde ${ }^{\text {e }}$ rflctns	2162	2426	1189	1085	
refined parameters	313	163	109	94	
$R_{1}{ }^{\prime}$	0.027	0.024	0.041	0.023	
$\mathrm{R}_{2} \mathrm{~g}^{8}$	0.029^{h}	$0.027{ }^{\text {h }}$	0.054^{i}	0.030^{\prime}	
GOF ${ }^{\text {k }}$	1.03	1.00	1.44	0.99	
diff max, e \AA^{-3}	0.6 (2) ${ }^{1}$	$0.7(2)^{m}$	$0.8(2)^{n}$	$0.4(1)^{\circ}$	
max, \|shift/error		$0.08, p{ }^{p} 0.22^{q}$	0.01	0.01	0.01

${ }^{a}$ Analytical corrections for absorption applied to raw data after ref $14 .{ }^{b}$ Rep time is hours of acquisition time between repeat measurements of standards. In each case the standards showed no significant variations in intensity throughout data acquisition. ${ }^{c}$ The background intensities were estimated by extension of the predetermined scan angle by 25% on either side. ${ }^{d}$ The scan speed for each reflection was determined from the intensity of a preliminary scan. ${ }^{2} I \geq 2.5 \sigma(I)$. ${ }^{f} R_{1}=\sum\left(\left|F_{\mathrm{d}}\right|-\left|F_{\mathrm{d}}\right|\right) / \sum\left|F_{\mathrm{o}}\right|$; for observed data. ${ }^{g} R_{2}=\left[\sum\left(w\left(\left|F_{0}\right|-\left|F_{\mathrm{d}}\right|\right)^{2}\right) / \sum\left(w F_{0}^{2}\right)\right]^{1 / 2}$; for observed data. ${ }^{h}$ Unit weights, $w=1$. ${ }^{l} W=\left[\sigma^{2}(F)+0.009 F^{2}\right]^{-1}$. ${ }^{j} W=\left[\sigma^{2}(F)+0.005 F^{2}\right]^{-1}$. ${ }^{k}$ GOF $=\left[\sum w\left(F_{\mathrm{o}}-F_{\mathrm{e}}\right)^{2} / \text { degrees of freedom }\right]^{1 / 2}$. ${ }^{t} 1.12 \AA$ from $\mathrm{Se}(303) .{ }^{m} 0.86 \AA$ from $\operatorname{Se}(7) .{ }^{n} 0.99 \AA$ from $\operatorname{Se}(9) .{ }^{0} 1.14 \AA$ from $\mathrm{Se}(1) .{ }^{p}$ Non-hydrogen variables. ${ }^{q}$ Hydrogen coordinates.

Table III. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (\AA^{2}) for the Se and C Atoms of 1a at 200 K

atom	x	y	z	$B_{\text {eq }}$
$\mathrm{Se}(101)$	$0.68391(7)$	$0.72877(24)$	$0.64785(4)$	3.33
$\mathrm{Se}(103)$	$0.62841(6)$	$0.64491(20)$	$0.75419(4)$	2.79
$\mathrm{Se}(107)$	$0.81499(6)$	$1.26154(21)$	$0.85184(4)$	2.92
$\mathrm{Se}(109)$	$0.92095(6)$	$1.04717(20)$	$0.76656(3)$	2.48
$\mathrm{Se}(201)$	$0.30648(5)$	$-0.22172(20)$	$0.53286(3)$	2.20
$\mathrm{Se}(203)$	$0.48195(6)$	$-0.05581(19)$	$0.58614(3)$	1.98
$\mathrm{Se}(301)$	$0.80846(6)$	$0.72119(21)$	$0.52825(4)$	2.44
$\mathrm{Se}(303)$	$0.97618(6)$	$0.55654(20)$	$0.58923(4)$	2.22
$\mathrm{C}(102)$	$0.6183(7)$	$0.8582(23)$	$0.6991(4)$	3.0
$\mathrm{C}(104)$	$0.5924(7)$	$0.8684(24)$	$0.8038(4)$	3.1
$\mathrm{C}(105)$	$0.6532(6)$	$1.0722(23)$	$0.8155(4)$	3.1
$\mathrm{C}(106)$	$0.7377(7)$	$0.9908(20)$	$0.8390(4)$	3.0
$\mathrm{C}(108)$	$0.8511(6)$	$1.3133(20)$	$0.7873(4)$	2.5
$\mathrm{C}(110)$	$0.9120(7)$	$1.0940(23)$	$0.6973 .(4)$	3.0
$\mathrm{C}(111)$	$0.8240(7)$	$1.0486(23)$	$0.6740(4)$	3.2
$\mathrm{C}(112)$	$0.7971(6)$	$0.7916(22)$	$0.6772(4)$	3.0
$\mathrm{C}(202)$	$0.3680(6)$	$0.0425(21)$	$0.5641(4)$	2.5
$\mathrm{C}(204)$	$0.5343(6)$	$0.2676(19)$	$0.5872(4)$	2.4
$\mathrm{C}(205)$	$0.5725(6)$	$0.3309(21)$	$0.5411(4)$	2.3
$\mathrm{C}(206)$	$0.6489(6)$	$0.1748(21)$	$0.5311(3)$	2.2
$\mathrm{C}(302)$	$0.8706(8)$	$0.4534(21)$	$0.5577(5)$	3.4
$\mathrm{C}(304)$	$1.0311(7)$	$0.2367(19)$	$0.5920(4)$	2.5
$\mathrm{C}(305)$	$1.0695(6)$	$0.1696(21)$	$0.5442(4)$	2.8
$\mathrm{C}(306)$	$1.1469(6)$	$0.3120(21)$	$0.5363(4)$	2.6

below)). After analytical corrections for absorption, ${ }^{14}$ data reduction was performed, including intensity scaling and Lorentz and polarization corrections. The positions of the Se atoms were determined by direct methods ${ }^{15}$ for 1a, 2a, and 5 while those of 4 were derived from a Pat-
(14) DeMeulenaer, J.; Tompa, H. Acta Crystallogr. 1965, 19, 1014.

Table IV. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (\AA^{2}) for the Se and C Atoms of 2a at 190 K

atom	\boldsymbol{x}	y	\boldsymbol{z}	$B_{\text {eq }}$
$\mathrm{Se}(1)$	$0.10307(3)$	$0.54646(11)$	$0.00060(3)$	1.59
$\mathrm{Se}(3)$	$0.14675(3)$	$0.97138(11)$	$0.14388(3)$	1.65
$\mathrm{Se}(7)$	$0.39884(3)$	$1.34426(13)$	$0.24866(4)$	2.15
$\mathrm{Se}(9)$	$0.49083(3)$	$1.36661(13)$	$0.12444(4)$	2.36
$\mathrm{Se}(13)$	$0.27804(3)$	$0.79769(11)$	$-0.03052(4)$	1.90
$\mathrm{Se}(15)$	$0.14624(3)$	$1.11658(11)$	$-0.15831(4)$	2.04
$\mathrm{C}(2)$	$0.0934(3)$	$0.6727(11)$	$0.0995(3)$	1.7
$\mathrm{C}(4)$	$0.2367(3)$	$0.8055(12)$	$0.2014(4)$	2.3
$\mathrm{C}(5)$	$0.2949(3)$	$0.9877(13)$	$0.2433(4)$	2.3
$\mathrm{C}(6)$	$0.3179(3)$	$1.1405(12)$	$0.1860(4)$	2.3
$\mathrm{C}(8)$	$0.4193(3)$	$1.5085(11)$	$0.1622(3)$	1.9
$\mathrm{C}(10)$	$0.4367(3)$	$1.0976(11)$	$0.0590(4)$	2.0
$\mathrm{C}(11)$	$0.3851(3)$	$1.1732(11)$	$-0.0245(4)$	2.0
$\mathrm{C}(12)$	$0.3440(3)$	$0.9570(13)$	$-0.0738(4)$	2.4
$\mathrm{C}(14)$	$0.2102(3)$	$1.0669(11)$	$-0.0478(3)$	1.9
$\mathrm{C}(16)$	$0.1001(3)$	$0.7931(12)$	$-0.1771(3)$	1.9
$\mathrm{C}(17)$	$0.0340(3)$	$0.7683(12)$	$-0.1566(3)$	1.9
$\mathrm{C}(18)$	$0.0433(3)$	$0.8056(11)$	$-0.0687(3)$	1.7

terson map. All carbon atoms were found from subsequent Fourier syntheses. All the hydrogen atoms for 19 and 5 were located in difference maps, and for these structures final refinement included the coordinates of all atoms. For $2 a$ and 4 , most, but not all, of the hydrogen sites could be located in difference maps, and for these structures all the hydrogen atoms were placed in calculated positions and repositioned after further refinement of Se and C . In all four cases anisotropic temperature factors for Se and C were included in the final, full-matrix, least-squares re-
(15) Main, P.; Fiske, S. J.; Hull, S. E.; Lessinger, L.; Germain, G.; Declercq, J.-P.; Woolfson, M. M. multanso, A System of Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data; Department of Physics, University of York, York, England, 1980.

Table V. Fractional Coordinates and Equivalent Isotropic Thermal Parameters $\left(\AA^{2}\right)$ for the Se and C Atoms of 4 at 195 K

atom	x	y	z	$B_{\text {eq }}$
$\mathrm{Se}(1)$	$0.73061(21)$	$0.75039(12)$	$0.01056(7)$	2.45
$\mathrm{Se}(5)$	$1.17706(20)$	$0.87805(12)$	$0.33714(7)$	2.40
$\mathrm{Se}(9)$	$0.32811(20)$	$0.72617(11)$	$0.66192(7)$	2.24
$\mathrm{C}(2)$	$0.7331(18)$	$0.8726(11)$	$0.1089(7)$	2.2
$\mathrm{C}(3)$	$0.9359(19)$	$0.8291(11)$	$0.1728(7)$	2.2
$\mathrm{C}(4)$	$0.9458(20)$	$0.9439(11)$	$0.2367(7)$	2.2
$\mathrm{C}(6)$	$0.9436(20)$	$0.7197(11)$	$0.4352(7)$	2.6
$\mathrm{C}(7)$	$0.7572(19)$	$0.7890(10)$	$0.5016(6)$	2.0
$\mathrm{C}(8)$	$0.5740(20)$	$0.6559(11)$	$0.5666(7)$	2.4
$\mathrm{C}(10)$	$0.5470(20)$	$0.6936(11)$	$0.7657(7)$	2.5
$\mathrm{C}(11)$	$0.5412(18)$	$0.5163(11)$	$0.8333(7)$	2.2
$\mathrm{C}(12)$	$0.2930(18)$	$0.4719(11)$	$0.9006(7)$	2.1

Table VI. Fractional Coordinates and Equivalent Isotropic Thermal Parameters (\AA^{2}) for the Se and C Atoms of 5 at 195 K

atom	x	y	z	$B_{\text {eq }}$
Se(1)	$-0.24069(8)$	$0.53790(3)$	$0.18222(5)$	2.09
$\mathrm{Se}(4)$	$0.46229(9)$	$0.73933(3)$	$0.48867(5)$	2.27
$\mathrm{C}(2)$	$0.0305(9)$	$0.6110(3)$	$0.3580(5)$	2.0
$\mathrm{C}(3)$	$0.2339(9)$	$0.6567(3)$	$0.3204(5)$	2.1
$\mathrm{C}(5)$	$0.6454(9)$	$0.6649(3)$	$0.6789(5)$	2.1
$\mathrm{C}(6)$	$0.8476(9)$	$0.6024(3)$	$0.6711(4)$	2.0
$\mathrm{C}(7)$	$0.9805(9)$	$0.5462(3)$	$0.8204(5)$	2.0

finements. For 5 , the reflection $-1,0,2$ suffered from extinction and was omitted from the refinement. Weighting schemes were chosen that leveled $\left(\omega\left(F_{0}-F_{\mathrm{e}}\right)^{2}\right)$ as a function of both $(\sin \theta) / k$ and $\left|F_{0}\right|$. Positional and equivalent isotropic thermal parameters for the selenium and carbon atoms are given in Tables III-VI for 1a, 2a, 4, and 5, respectively. The coordinates and temperature factors for the hydrogen atoms as well as the anisotropic temperature factors for the non-hydrogen atoms and lists of observed and calculated structure factors for the four structures are deposited as supplementary material (see the paragraph at the end of the paper).

The solution and refinement of the structure of 3 were unsatisfactory. ${ }^{16}$ Data collected on two different crystals, one quadrant at 160 K and one hemisphere at room temperature, yielded similar results. Although the diffraction pattern could be indexed on an F-centered orthorhombic cell, the relative intensities of the data (corrected analytically ${ }^{14}$ for absorption) clearly indicated monoclinic symmetry. The structure was solved initially by direct methods ${ }^{15}$ in the space group $C 2 / c$. The best chemically reasonable model obtained in $C 2 / c$ yielded a residual of 11% but included considerable disorder. Extensive use of restraints were necessary to stabilize the refinement since interparameter correlation coefficients were high. This is, of course, consistent with the large number of parallel interatomic vectors resulting from the approximate higher symmetry of the structure. ${ }^{17}$ In addition to the uncertainty about the space group, the question of twinning was also carefully (but unsuccessfully) considered. Our most reasonable model ($R=7.0 \%$) is not twinned but has one of the three molecules in the asymmetric unit disordered in the space group Cc. There are restraints on all bond distances and angles, and the unreasonable behavior on their relaxation indicates clearly that this model is not a minimum for $\sum w \Delta^{2}$ (and implicitly " R "); one therefore cannot be confident that the result is definitive. We do not believe a better model (of comparable simplicity) can be obtained. Structural parameters for this model as well as observed and calculated structure factors are deposited as supplementary material.

The programs used for data reduction for all structures, and structure solution and refinement of 1a, 2a, 4, and 5 were from the NRC VAX crystal structure system. ${ }^{18}$ The system CRySTALS ${ }^{19}$ was used for the refinement of 3. Complex scattering factors for neutral atoms ${ }^{20}$ were used in the calculation of structure factors. Diagrams were generated
(16) $\mathrm{Se}_{4} \mathrm{C}_{12} \mathrm{H}_{24}$; monoclinic; space group $C c, T=160 \mathrm{~K} ; a=21.975$ (5) $\AA ; b=18.073$ (4) $\AA ; c=16.431$ (7) $\AA ; \beta=132.16(2)^{\circ} ; V=4837.3 \AA^{3} ; Z$ $=12 ; \mathrm{fw}=484.16 ; P_{\mathrm{e}}=1.994 \mathrm{~g} \mathrm{~cm}^{-3} ; \mu_{\mathrm{MoK} \alpha}=89.9 \mathrm{~cm}^{-1}$; crystal size 0.25 $\times 0.30 \times 0.45 \mathrm{~mm}$; transmission ($\mathrm{Mo} \mathrm{K} \alpha$) $0.090-0.142 ; 2079$ observed data $(F \geq 5 \sigma(F)) ; 130$ restraints; 232 refined parameters; $R_{\mathrm{f}}=0.067$.
(17) Geller, S. Acta Crystallogr. 1961, 14, 1026.
(18) Gabe, E. J.; Larson, A. C.; Lee, F. L.; LePage, Y. NRC VAX Crystal Structure System; Ottawa, Canada, National Research Council, 1984.
(19) Watkin, D. J.; Carruthers, J. R.; Betteridge, P. W. CRYSTALS; Chemical Crystallography Laboratory; University of Oxford, 1985.
(20) International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1975; Vol. IV 99.

Scheme II

with the program snoopl. ${ }^{21}$ All computations were carried out on a MicroVax-II computer.

Results

Synthesis and Characterization. Reaction of sodium pro-pane-1,3-bis(selenolate), derived from 1,3-propanebis(selenocyanate $)^{22,23}$ by reduction with sodium in liquid ammonia, with dibromomethane in liquid ammonia and THF gave, in addition to 1,3 -diselenane (10%), 1a (10%) and $\mathbf{2 a}$ (5%) as colorless solids (Scheme I). The rest of the reaction mixture appeared to consist of polymeric material. Similar treatment of 2,2-dimethyl-propane-1,3-bis(selenolate), obtained by sodium reduction of 4,4-dimethyl-1,2-diselenolane ${ }^{23,24}$ in liquid ammonia, yielded crystalline $\mathbf{1 b}$ and $\mathbf{2 b}$. The formation of the larger ring homologues of 1,3 -diselenane in significant amounts was surprising, and we were stimulated to pursue this rection type further. It is worth noting that even though the coronands are formed in low yield, they are nevertheless formed in a one-step reaction.
Extension of this approach to the preparation of coronands containing only three-carbon bridges proved to be more successful. Thus, treatment of sodium propane-1,3-bis(selenolate) with 1,3dibromopropane afforded, in one step, 3 (40\%), 4 (15\%), and 1,5 -diselenacyclooctane ($6,17 \%$, Scheme I). The total yield of cyclic product (72%) is quite remarkable. The analogous reaction of sodium ethane-1,2-bis(selenolate) ${ }^{25}$ with 1,3-dibromopropane afforded 5 in 36% yield. In the latter case, however, isolation proved to be difficult, significant decomposition occurring on the column during chromatography. We propose that 5 (and its higher homologues) decomposes to give ethylene and 1,2-diselenolane since an intense red color (characteristic of the latter species) was observed on the silica gel. The only other material isolated in low yield was 1,4-diselenacycloheptane.
Similar attempts to synthesize analogues with only two-carbon bridges, for example, the prototype coronand 18 -crown-6, by reaction of sodium ethane-1,2-bis(selenolate) ${ }^{25}$ with 1,2 -dibromoethane were totally unsuccessful, with deposition of selenium and the extrusion of ethylene. ${ }^{26}$ This likely arises because of the intermediate formation of the labile ethylene episelenide, ${ }^{29}$ as shown in Scheme II (intermediacy of episelenonium ions has also been invoked in the nucleophilic substitution reactions of β-substituted selenides ${ }^{30}$).

[^2]Table V11. Bond Distances and Angles and Torsion Angles for the Se and C atoms of 1a at $200 \mathrm{~K}^{a}$

${ }^{a}$ One prime represents $1-x,-y, 1-z$. Two primes represent $2-x, 1-y, 1$ $-z$.

All compounds gave satisfactory combustion (C, H) microanalysis data. However, these data alone were not very informative owing to the oligomeric nature of the molecules. The actual structures were deduced by chemical ionization mass spectrometry. The isobutane chemical ionization mass spectra of 1-6 exhibited $M^{+}+1$ molecular ion isotopic clusters that correlated with the computer-simulated molecular ion patterns for the parent ions. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectroscopic data are entirely in accord with the proposed structures. A noteworthy feature is the relatively low ${ }^{13} \mathrm{C}$ chemical shift observed for the methylene carbon atoms flanked by two polarizable Se atoms in the $\mathrm{Se}-\mathrm{C}-\mathrm{Se}$ units ${ }^{23}$ in 1a, 1b, 2a, and 2b.

X-ray Crystallography. All bond distances found for 1a, 2a, 4, and 5 are consistent with expected values for single covalent bonds. These are listed along with bond angles and torsion angles in Tables VII-X, respectively. Analogous parameters for $\mathbf{3}$ are deposited as supplementary material. Intermolecular distances are consistent with van der Waals interactions, except for Se contacts identified below for the individual structures. None of the structures display intramolecular contacts between atoms separated by more than three bonds that are less than the sum of the respective accepted van der Waals radii.
(30) Lindgren, B. Tetrahedron Lett. 1974, 4347; Acta Chem. Scand. 1977, B3l, 1 .

Table VIII. Bond Distances and Angles and Torsion Angles for the Se and C Atoms of 2a at 190 K

Distances, \AA			
$\mathrm{Se}(1)-\mathrm{C}(2)$	1.947 (6) S	$\mathrm{Se}(1)-\mathrm{C}(18) \quad 1$.	67 (6)
$\mathrm{Se}(3)-\mathrm{C}(2)$	1.946 (6) S	$\mathrm{Se}(3)-\mathrm{C}(4) \quad 1$.	53 (6)
$\mathrm{Se}(7)-\mathrm{C}(6)$	1.955 (6) S	$\mathrm{Se}(7)-\mathrm{C}(8) \quad 1.9$	32 (6)
$\mathrm{Se}(9)-\mathrm{C}(8)$	1.944 (6) S	$\mathrm{Se}(9)-\mathrm{C}(10) \quad 1.93$	(6)
$\mathrm{Se}(13)-\mathrm{C}(12)$	1.951 (6) S	$\mathrm{Se}(13)-\mathrm{C}(14) \quad 1.9$	46 (6)
Se(15)-C(14)	1.939 (6) S	$\mathrm{Se}(15)-\mathrm{C}(16) \quad 1.95$	55 (7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.510 (9) C	$\mathrm{C}(5)-\mathrm{C}(6)$	01 (9)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.530 (9) C	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.5$	17 (9)
$\mathrm{C}(16)-\mathrm{C}(17)$	1.503 (9) C	$\mathrm{C}(17)-\mathrm{C}(18)$	09 (8)
Angles, deg			
$\mathrm{C}(18)-\mathrm{Se}(1)-\mathrm{C}(2)$	94.3 (3) C($C(4)-\mathrm{Se}(3)-\mathrm{C}(2)$	96.0 (3)
$\mathrm{C}(8)-\mathrm{Se}(7)-\mathrm{C}(6)$	100.4 (3) C(C(10)-Se(9)-C(8)	100.0 (3)
$\mathrm{C}(14)-\mathrm{Se}(13)-\mathrm{C}(12)$	98.3 (3) C(1)	C(16)-Se(15)-C(14)	98.8 (3)
$\mathrm{Se}(3)-\mathrm{C}(2)-\mathrm{Se}(1)$	116.0 (3) C($\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{Se}(3)$	111.8 (5)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	113.6 (6) C(C(5)-C(6)-Se(7)	108.9 (4)
$\mathrm{Se}(9)-\mathrm{C}(8)-\mathrm{Se}(7)$	118.6 (3) C($\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Se}(9)$	114.9 (5)
C(12)-C(11)-C(10)	113.1 (6) C($C(11)-\mathrm{C}(12)-\mathrm{Se}(13)$	115.2 (4)
$\mathrm{Se}(15)-\mathrm{C}(14)-\mathrm{Se}(13)$	116.2 (3) C($\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{Se}(15)$	116.6 (5)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	115.8 (5) C($C(17)-\mathrm{C}(18)-\mathrm{Se}(1)$	111.8 (4)
Torsion Angles, deg			
$\mathrm{C}(18)-\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{Se}(3)$		-74.1 (
$\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{Se}(3)-\mathrm{C}(4)$		-83.1 (4)	
$\mathrm{C}(2)-\mathrm{Se}(3)-\mathrm{C}(4)-\mathrm{C}(5)$		178.0 (5)	
$\mathrm{Se}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$		-69.1 (6)	
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Se}(7)$		-174.8 (6)	
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{Se}(7)-\mathrm{C}(8)$		178.0 (5)	
$\mathrm{C}(6)-\mathrm{Se}(7)-\mathrm{C}(8)-\mathrm{Se}(9)$		-94.4 (4)	
$\mathrm{Se}(7)-\mathrm{C}(8)-\mathrm{Se}(9)-\mathrm{C}(10)$		77.3 (4)	
$\mathrm{C}(8)-\mathrm{Se}(9)-\mathrm{C}(10)-\mathrm{C}(11)$		78.3 (5)	
$\mathrm{Se}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$		179.8 (8)	
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Se}(13)$) 66.0	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Se}(13)-\mathrm{C}(14)$) 67.8	
$\mathrm{C}(12)-\mathrm{Se}(13)-\mathrm{C}(14)-\mathrm{Se}(15)$		(15) 75.9 (4)	
$\mathrm{Se}(13)-\mathrm{C}(14)-\mathrm{Se}(15)-\mathrm{C}(16)$		16) 59.7 (4)	
$\mathrm{C}(14)-\mathrm{Se}(15)-\mathrm{C}(16)-\mathrm{C}(17)$) 90.4	
$\mathrm{Se}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$		-62.8 (6)	
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Se}(1)$		-65.5 (6)	
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{Se}(1)-\mathrm{C}(2)$		-177.6 (5)	

Table 1X. Bond Distances and Angles and Torsion Angles for the Se and C Atoms of 4 at $195 \mathrm{~K}^{a}$

Distances, \AA			
$\mathrm{Se}(1)-\mathrm{C}(2)$	1.968 (10)	$\mathrm{Se}(1)-\mathrm{C}(12) \quad 1.94$	4 (9)
$\mathrm{Se}(5)-\mathrm{C}(4)$	1.958 (11)	$\mathrm{Se}(5)-\mathrm{C}(6) \quad 1.950$	0 (10)
$\mathrm{Se}(9)-\mathrm{C}(8)$	1.958 (10)	$\mathrm{Se}(9)-\mathrm{C}(10) \quad 1.95$	1 (11)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.471 (14)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.51$	7 (14)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.500 (14)	$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.508$	8 (14)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.536 (14)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.500$	0 (14)
Angles, deg			
$\mathrm{C}(12)-\mathrm{Se}(1)-\mathrm{C}(2)$	99.1 (4)	$\mathrm{C}(6)-\mathrm{Se}(5)-\mathrm{C}(4)$	96.6 (5)
$\mathrm{C}(10)-\mathrm{Se}(9)-\mathrm{C}(8)$	96.8 (5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{Se}(1)$	15.6 (7)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	112.0 (8)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Se}(5)$	15.0 (7)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{Se}(5)$	115.9 (7)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	10.0 (8)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Se}(9)$	114.7 (6)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{Se}(9)$	13.6 (7)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	112.5 (8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Se}(1)$	15.2 (7)
Torsion Angles, deg			
$\begin{aligned} & \mathrm{C}(12)^{\prime}-\mathrm{Se}(1)-\mathrm{C}(2)- \\ & \mathrm{C}(3) \end{aligned}$	56.4 (8)	$\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	172.4 (10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Se}(5)$	171.9 (10)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Se}(5)-\mathrm{C}(6)$	-81.8 (8)
$\mathrm{C}(4)-\mathrm{Se}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-84.6 (8)	$\mathrm{Se}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	174.7 (10)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Se}(9)$	177.3 (9)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Se}(9)-\mathrm{C}(10)$	-85.6 (8)
$\begin{aligned} & \mathrm{C}(8)-\mathrm{Se}(9)-\mathrm{C}(10)- \\ & \mathrm{C}(11) \end{aligned}$	-84.7 (8)	$\mathrm{Se}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-71.4 (9)
$\begin{aligned} & \mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)- \\ & \mathrm{Se}(1)^{\prime} \end{aligned}$	-179.7 (10)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Se}(1)^{\prime}-\mathrm{C}(2)^{\prime}$	-68.0 (8)

${ }^{a}$ The prime represents $1-x, 1-y, 1-z$.
The structure of 1a contains three crystallographically independent molecules that exist in two distinct conformations. Ring A has no crystallographic symmetry but has an approximate 2 -fold axis normal to the molecular plane, while rings B and C both lie on centers of inversion and have similar conformations (Figure 1). Ring A can be denoted as quadrangular [3333] in Dale's notation while rings B and C would be designated as "biangular" [66]. ${ }^{31}$ That is, each of the four corners in ring A is formed by

Figure 1. Molecular structure of $\mathbf{1 a}$.

Figure 2. Molecular structure of $\mathbf{2 a}$.
two gauche torsion angles of the same sign, whereas rings B and C have two such torsional sequences at opposite corners (with carbon as the pivotal atom) while the remaining corners (with selenium as the pivotal atom) are formed by consecutive gauche torsion angles of opposite sign. The former conformation was found for cyclododecane ${ }^{32}$ and 1,4,7,10-tetrathiacyclododecane, ${ }^{9,33}$ while the latter type occurs in 1,4,7,10-tetraoxacyclododecane. ${ }^{34}$ The close Se...Se contacts are 3.691 (2) $\AA(\operatorname{Se}(201) \ldots \mathrm{Se}(301))$ and 3.695 (2) $\AA\left(\operatorname{Se}(201) \cdots \operatorname{Se}(301)^{\prime \prime \prime}\right.$, where the three primes represent $x, 1+y, z$). The shortest nonbonded Se...C distance is 3.563 (10) $\AA\left(\operatorname{Se}(301) \cdots C(206)^{\prime \prime \prime}\right)$.

The asymmetric unit of 2 a contains one molecule having a

[^3]Table X. Bond Distances and Angles and Torsion Angles for the Se and C Atoms of 5 at 195 K

Distances, \AA			
$\mathrm{Se}(1)-\mathrm{C}(2)$	1.963 (5)	$\mathrm{Se}(1)-\mathrm{C}(7)^{\prime} \quad 1.95$	57 (5)
$\mathrm{Se}(4)-\mathrm{C}(3)$	1.958 (5)	$\mathrm{Se}(4)-\mathrm{C}(5) \quad 1.96$	(5)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.508 (6)	$\mathrm{C}(5)-\mathrm{C}(6) \quad 1.51$	13 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.516 (6)		
Angles, deg			
$\mathrm{C}(2)-\mathrm{Se}(1)-\mathrm{C}(7)^{\prime}$	99.8 (2)	$\mathrm{C}(5)-\mathrm{Se}(4)-\mathrm{C}(3)$	99.8 (2)
$\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.6 (3)	$\mathrm{Se}(4)-\mathrm{C}(3)-\mathrm{C}(2) \quad 1$	12.0 (3)
$\mathrm{Se}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	113.6 (3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5) \quad 1$	11.2 (4)
$\mathrm{Se}(1)^{\prime}-\mathrm{C}(7)-\mathrm{C}(6)$	113.7 (3)		
Torsion Angles, deg			
$\mathrm{C}(7)-\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	65.8 (4)	$\mathrm{Se}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Se}(4)$	172.3 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{Se}(4)-\mathrm{C}(5)$	58.9 (4)	$\mathrm{C}(3)-\mathrm{Se}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	66.2 (4)
$\mathrm{Se}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	-179.5 (6)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Se}(1)$	179.0 (6)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{Se}(1)^{\prime}-\mathrm{C}(2)^{\prime}$	-69.2 (4)		

unique irregular shape, in sharp contrast to the symmetrical quadrangular shapes normally exhibited by even-membered cycloalkane derivatives. ${ }^{31}$ The two long sides of the ring, shown in Figure 2, are distinctly different in character. The lower side of the ring, as shown, displays features typical of medium-sized macrocycles ${ }^{31}$ in that it is made up of approximately planar sequences, delineated by one or two anti torsion angles, which are connected by one or two bonds displaying gauche torsion angles. The upper side of the ring displays the unusual feature of an eight-atom helix, from $\mathrm{C}(10)$ to $\mathrm{C}(17)$, resulting from five consecutive gauche torsion angles of the same sign. The two sides are connected at the "corner" atom C(17) and by $\mathrm{Se}(9)$. $\mathrm{Se}(1)$, $\mathrm{Se}(3)$, and $\mathrm{Se}(13)$ can be described as endodentate, while $\mathrm{Se}(7)$, $\mathrm{Se}(9)$, and $\mathrm{Se}(15)$ are exodentate. The sequence of torsion angles about the ring, beginning at the $\mathrm{Se}(1)-\mathrm{C}(2)$ bond, may be represented as $\mathrm{G}^{-} \mathrm{G}^{-} \mathrm{AG}^{-} \mathrm{AAG}^{-} \mathrm{G}^{+} \mathrm{G}^{+} \mathrm{AG}^{+} \mathrm{G}^{+} \mathrm{G}^{+} \mathrm{G}^{+} \mathrm{G}^{+} \mathrm{G}^{-} \mathrm{G}^{-} \mathrm{A}$. An intermolecular $\mathrm{Se} \ldots$. Se distance of 3.6228 (12) $\AA\left(\mathrm{Se}(7) \cdots \mathrm{Se}(9)^{\prime}\right.$,

Figure 3. Molecular structure of 3.

Figure 4. Molecular structure of 4.
$'=1-x, y-1 / 2,1 / 2-z$) represents the only significant nonbonded contact.

The structural model for 3, while partially disordered and certainly suffering from a high degree of interparameter correlation, clearly reveals molecules of only one conformational type. In the space group $C c$ the asymmetric unit contains three molecules. The molecules are all [3535] quadrangles each having approximate 2 -fold rotational symmetry about an axis perpendicular to the molecular plane. A representative example of the ring geometry is shown in Figure 3. The ranges of bond distances and of bond angles (restrained during structure refinement) are as follows: $\mathrm{Se}-\mathrm{C}, 1.94-1.97 \AA$; $\mathrm{C}-\mathrm{C}, 1.50-1.55 \AA ; \mathrm{C}-\mathrm{Se}-\mathrm{C}$, $97.4-99.8^{\circ} ; \mathrm{Se}-\mathrm{C}-\mathrm{C}, 110.3-114.8^{\circ} ; \mathrm{C}-\mathrm{C}-\mathrm{C}, 111.6-114.0^{\circ}$. The shortest $\mathrm{Se} \cdot \mathrm{Me}$ distance is an intermolecular contact of 3.45 (2) \AA.

The structure of 4 contains a single conformer possessing crystallographic inversion symmetry. The sequence of torsion angles, beginning with the $\mathrm{Se}(1)-\mathrm{C}(2)$ bond and progressing clockwise about the ring shown in Figure 4, can be described as $\mathrm{G}^{+} \mathrm{AAG}^{-} \mathrm{G}^{-} \mathrm{AAG}^{-} \mathrm{G}^{-} \mathrm{G}^{-} \mathrm{AG}^{-} \mathrm{G}^{-} \mathrm{AAG}^{+} \mathrm{G}^{+} \mathrm{AAG}^{+} \mathrm{G}^{+} \mathrm{G}^{+} \mathrm{AG}^{+}$. While not quadrangular in shape, this molecule can be visualized as deriving from a [4848] quadrangle with each long side buckled by replacing three anti torsion angles with three gauche torsion angles of the same sign. Thus, an asymmetric unit consisting of $\mathrm{Se}(9)$ through $\mathrm{C}(10)^{\prime}$, proceeding clockwise in Figure 4, represents a "[443]" fragment, connected to its inversion related opposite by the bonds $\operatorname{Se}(9)-\mathrm{C}(10)$ and $\mathrm{Se}(9)^{\prime}-\mathrm{C}(10)^{\prime}$. The connecting sequences of torsion angles from $\mathrm{C}(7)$ to $\mathrm{C}(12)$ (and $\mathrm{C}(7)^{\prime}$ to $\left.\mathrm{C}(12)^{\prime}\right)$ can be described as incipient helices. It is noteworthy that each selenium atom is situated between a pair of gauche torsion angles of the same sign. There are no significant nonbonded contacts.

The structure of 5 contains a single conformer lying on a crystallographic center of inversion (Figure 5). The molecule, which displays approximate $2 / m$ point symmetry, is a [3434] quadrangle analogous to that in the α-form of its lighter congener, 1,4,8,11-tetrathiacyclotetradecane. ${ }^{35}$ All four corner positions are occupied by selenium. The corner-to-corner packing of

[^4]

Figure 5. Molecular structure of 5.

compd	$\delta{ }^{77} \mathrm{Se}$ (rel int)	$\delta{ }^{13} \mathrm{C}$ (rel int)
$1 \mathbf{1 a}$	130 (2), $W_{1 / 2}=110 \mathrm{~Hz}$	11.2 (2)
	$\begin{aligned} & 171(1), W_{1 / 2}=20 \mathrm{~Hz}, J_{\mathrm{Se}-\mathrm{Se}}=36 \\ & \mathrm{~Hz} \end{aligned}$	17.6 (1)
	186 (2), $W_{1 / 2}=35 \mathrm{~Hz}$	19.8 (1)
	196 (1)	25.2 (2)
	203 (1), $J_{\text {Se-Se }}=31 \mathrm{~Hz}$	30.9)
	209 (1), $J_{\text {Se-Se }}=34 \mathrm{~Hz}$	32.1
		34.0 (10)
		35.3
		37.1
2a	136 (1), 188 (1), 206 (1), 216 (1)	16.0 (1)
	264 (1), $J_{\text {Se-Se }}=128 \mathrm{~Hz}$	19.2 (1)
	327 (1), $J_{\text {Se-Se }}=129 \mathrm{~Hz}$	20.2 (1)
		23.7 (1)
		25.7 (1)
		28.4 (2)
		29.7 (1)
		30.9 (3)
		33.9 (1)
3	$\begin{aligned} & 115(2), 118(1), 157(1), 165(1), \\ & 177(1) \end{aligned}$	20.2) (1, br complex)
		$\left.\begin{array}{r} 22.3 \\ 24.7 \end{array}\right\}$
		29.6
		30.1 ($1, \mathrm{br}$ complex)
		33.3)
4	158 (1), 174 (1), 194 (1)	21.0 (2)
		26.2 (3)
		30.5 (1)
		34.3 (1)
		36.2 (2)
5	220 (1), 225 (1)	20.5 (1)
		21.8 (1)
		22.6 (2)
		34.6 (1)

molecules in this structure results in a significant Se...Se contact ($\operatorname{Se}(1) \cdots \operatorname{Se}(1)^{\prime \prime}$, where the two primes represent $\left.1-x, 1-y,-z\right)$ of 3.4111 (9) \AA. Of the selenium coronand structures reported here, that of $\mathbf{5}$ displays the smallest estimated standard deviations (esd's). For this reason the anisotropic thermal motion was analyzed by using a rigid-body model for the molecule. ${ }^{36}$ The weighted residual for observed and calculated $U_{i j}$ was 10.8% and the root-mean-square discrepancy was $0.002 \AA^{3}$, which is comparable to the esd of an individual $U_{i j}$. Despite the good fit, the corrections to bond lengths, etc., are negligible compared to the errors, so they have not been listed.

Solid-State NMR Spectroscopy. The solid-state cross polari-zation-magic-angle spinning (CP-MAS) ${ }^{77} \mathrm{Se}$ and ${ }^{13} \mathrm{C}$ NMR

Figure 6. Variable-temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{1 b}$ in $\mathrm{CFCl}_{3} /$ $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (85/15); the asterisk denotes the residual solvent peak.
spectra data for 1a, 2a, 3, 4, and 5 are listed in Table XI. The spectra are interpreted in light of the crystallographic information.

Dynamic NMR Studies. Of all the coronands examined, only 1a and $\mathbf{1 b}$ exhibited line-broadening effects due to chemical exchange in their NMR spectra in the accessible temperature range. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of 1 a in $\mathrm{CFCl}_{3} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(85 / 15)$ exhibited the following behavior. Whereas the $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}(\delta$ 3.56) and the $\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}(\delta 1.98)$ resonances remain unaffected as the temperature is lowered, the $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{C}$ resonance ($\delta 2.82$) broadens at about 165 K and reaches the coalescence point at 133 K , the practical low-temperature limit of our instrument. In contrast, the ${ }^{77} \mathrm{Se}$ and ${ }^{13} \mathrm{C}$ NMR spectra (down to 154 K) do not show any changes with temperature due to chemical exchange. The tetramethyl derivative $\mathbf{1 b}$ behaves similarly to 1a. However, in this case, the barriers to conformational interconversion are higher, and the ${ }^{1} \mathrm{H}$ NMR spectrum at the slow-exchange limit was obtained. The $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{C}$ signal ($\delta 3.01$) broadens at about 185 K and splits into two signals ($\delta 2.72,3.10$) below 165 K , whereas the $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}$ ($\delta 3.64$) and methyl ($\delta 1.19$) signals remain unchanged (Figure 6). The splitting of the $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{C}$ signal to give an AB system (${ }^{1} J_{\mathrm{AB}}=9.5 \mathrm{~Hz}$, after resolution enhancement) at 141 K indicates that these geminal hydrogens are diastereotopic. As is the case with 1 a , the ${ }^{77} \mathrm{Se}$ and ${ }^{13} \mathrm{C}$ NMR spectra (down to 154 K) do not show any changes with temperature attributable to chemical exchange.

The free energy of activation for conformational interconversion in $\mathbf{1 b}$ at the coalescence temperature, 167 K , was calculated by using the equation for a coalescing AB system, $\Delta G_{\mathrm{c}}{ }^{*}=4.575$ -$\left(10^{-3}\right) T\left[9.972+\log \left(T /\left(\delta \nu^{2}+6 J_{\mathrm{AB}}{ }^{2}\right)^{1 / 2}\right)\right]^{37}$ and was found to be ca. $7.6 \mathrm{kcal} \mathrm{mol}{ }^{-1}$. Similarly, $\Delta G_{\mathrm{c}}{ }^{*}$ in $\mathbf{1 a}$ was estimated to be ca. $6.0 \mathrm{kcal} \mathrm{mol}^{-1}\left(T_{\mathrm{c}}=133 \mathrm{~K}\right)$, assuming that $\Delta \nu$ and ${ }^{1} J_{\mathrm{AB}}$ for the exchanging protons are the same in $\mathbf{1 a}$ and $\mathbf{1 b}$.

Discussion

The solid-state conformation of 1 a contrasts with the conformations of $1,4,7,10$-tetrathiacyclododecane, 9,33 in which S occupies exclusively the corner positions, and of 1,4,7,10-tetraoxacyclododecane, ${ }^{34}$ in which O is found only in side positions. We note, however, the difference in connectivity between 1a and the latter derivatives. The oxygen congener of 1a, namely, 1,3,7,9-tetraoxacyclododecane, has been reported to exist in solution in a preferred conformation with the oxygen atoms occupying only side positions. ${ }^{38}$

The asymmetric unit of $\mathbf{1 a}$ is composed of 8 Se and 16 C atoms. The solid-state CP-MAS ${ }^{77}$ Se NMR spectrum consists of six resolved resonances (δ 209-130) of relative intensity $1: 1: 1: 2: 1: 2$,

[^5]some of which exhibit Se-Se coupling (Table XI). The line width of the peak at highest field is such that the individual unresolved resonances must be of considerably larger line width than the others. We note that $\mathrm{Se}(101)$ and $\mathrm{Se}(107)$ show the largest thermal motion and assign the highest field peak to these atoms. ${ }^{39}$ The solid-state CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum of 1 a is also consistent with the proposed structure. The resonances at $\delta 19.8$, 17.6, and 11.2 , of intensities $1: 1: 2$, are assigned to the carbons of the four independent $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}$ units. The high-field shifts appear to be characteristic of this structural unit. ${ }^{23}$ Structurally, each of these four atoms has one gauche and one anti $\mathrm{Se}-\mathrm{C}^{*}-\mathrm{Se}-\mathrm{C}$ arrangement, the atoms being distinguished by differences in the torsion angles. The angles for $\mathrm{C}^{*}(102)$ and $\mathrm{C}^{*}(108)$ are not significantly different, suggesting the assignment of the peak at $\delta 11.2$ to these atoms. We note also that in the latter case, the gauche torsion angles are larger than in the other two $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}$ units and suggest that the shielding of these carbon atoms is linked to the greater $n_{\mathrm{Se}}-\sigma^{*}{ }_{\mathrm{C}} \mathrm{Se}$ anomeric interactions ${ }^{23}$ (see below).

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 b}$ at 141 K (Figure 6) is consistent only with a preferred conformation displaying 2 -fold rotational symmetry axes that bisect the $\mathrm{CH}_{2}-\mathrm{CMe}_{2}-\mathrm{CH}_{2}$ and $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}$ groups. The assignment presumes that the $\mathrm{Se}-\mathrm{CH}_{2}-\mathrm{Se}$ and Me_{2} signals do not split because the groups are stereochemically equivalent and not because the signals are accidentally isochronous. In support of this contention, we have observed similar dynamic behavior in another solvent, $\mathrm{CS}_{2} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(85 / 15)$. 1a shows analogous dynamic behavior although the barrier to pseudorotation is lower. We propose that $\mathbf{1 a}$ and $\mathbf{1 b}$ undergo site exchange as shown in Figure 7.316 Similar conformational behavior has been observed ${ }^{38}$ for the oxygen congener, 1,3,7,9-tetraoxacyclododecane, and its 2,2,8,8-tetramethyl derivative.

While the placement of heteroatoms (X) across corners can be rationalized ${ }^{40-42}$ in terms of minimization of $1,4 \mathrm{CH} \cdots \mathrm{CH}$ contacts, and maximization of $1,4 \mathrm{CH} \cdots \mathrm{X}$ attractive interactions, ${ }^{43}$ we note also that such placement is consistent with expectations based on the anomeric effect ${ }^{44,45}$ (see below). Molecular mechanics (MacroModel ${ }^{46}$) calculations of analogous conformations for oxygen and sulfur species corresponding to 1 a show that the solution conformation is lower in energy than those in the solid $[\Delta H(\mathrm{O}$ analogue $)>\Delta H(\mathrm{~S}$ analogue $)]$. We expect the corresponding difference between conformations in the selenium analogue 1a to be even less.

The conformational barriers for $\mathbf{1 a}$ and $\mathbf{1 b}$ (6.0 and 7.6 kcal mol^{-1}, respectively) are of comparable magnitude to those in cyclododecane ($\left.7.3 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right)^{48}$ and cyclodecanone (7.3 kcal $\left.\mathrm{mol}^{-1}\right)^{49}$ and those for the two processes in 1,4,7,10-tetraoxacy-
(39) Suwelack, D.; Rothwell, W. P.; Waugh, J. S. J. Chem. Phys. 1980, 73, 2559.
(40) Borgen, G.; Dale, J.; Teien, G. Acta Chem. Scand. 1979, B33, 15. Dale, J. Isr. J. Chem. 1980, 20, 3.
(41) Bassi, I. W.; Scordamaglia, R.; Fiore, L. J. Chem. Soc., Perkin Trans. 2 1972, 1726. Dale, J.; Ekeland, T. Acta Chem. Scand. 1973, 27, 1519. Groth, P. Acta Chem. Scand. 1975, A29, 643.
(42) Dale, J. Tetrahedron 1974, 30, 1683.
(43) We note, however, that $1,4 \mathrm{CH} \cdots$. Se attractive interactions should be much less important than $1,4 \mathrm{CH} \ldots \mathrm{O}$ interactions.
(44) (a) Edward, J. T. Chem. Ind. (London) 1955, 1102. (b) Lemieux, R. U.; Chu, N. J. Abstracts of Papers, 133 rd National Meeting of the American Chemical Society, San Francisco, CA; American Chemical Society: Washington, DC, 1958; Abstract 31N. (c) Chu, N. J. Ph.D. Thesis, University of Ottawa, 1959.
(45) For leading references, see: (a) Anomeric Effect. Origin and Consequences; Szarek, W. A., Horton, D., Eds.; ACS Symposium Series 87; American Chemical Society: Washington, DC, 1979. (b) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer Verlag: Berlin, 1983. (c) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Wiley: New York, 1983.
(46) MacroModel is a molecular mechanics program developed by C. Still (Chemistry Department, Columbia University) that executes simulation and energy minimization routines. Energy minimizations were performed with the Allinger Mmp2 (85) force field. ${ }^{4}$
(47) Allinger, N. L. Molecular Mechanics; Quantum Chemistry Program Exchange, Program MMP2 (85), Indiana University, 1970.
(48) Anet, F. A. L.; Cheng, A. K.; Wagner, J. J. J. Am. Chem. Soc. 1972, 94, 9250.
(49) Anet, F. A. L.; Cheng, A. K.; Krane, J. J. Am. Chem. Soc. 1973, 95 , 7877.

Figure 7. Conformational interconversion pathway for $\mathbf{1 a}$ and $\mathbf{1 b}$; $\mathbf{1 a}, a=b=c=d=e=f=H ; \mathbf{b}, a=b=e=f=H$, $c=d=M e$.

Figure 8. Conformations of $\mathrm{RX}-\mathrm{CH}_{2}-\mathrm{YR}^{\prime}$ molecules and their relationships to the conformations of 2-substituted heterocyclohexanes.
clododecane $\left(5.5,6.8 \mathrm{kcal} \mathrm{mol}^{-1}\right)^{50}$ but are much lower than that in the oxygen congener ($11 \mathrm{kcal} \mathrm{mol}^{-1}$). ${ }^{38}$ The latter difference is attributable to the relative ground-state stabilization of the oxygen compound, although some contribution from the alleviation of syn-eclipsing interactions in the transition state for pseudorotation in 1a and $\mathbf{1 b}$, because of the longer C-Se bonds, cannot be ruled out.

The conformation of $\mathbf{2 a}$ is best analyzed in terms of the preferred torsion angles for the different four-atom sequences, Se -$\mathrm{C}-\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{C}$, and $\mathrm{Se}-\mathrm{C}-\mathrm{Se}-\mathrm{C}$. It has been suggested, ${ }^{9}$ on the basis of a consideration of 1,4 interactions, that gauche preferences about $\mathrm{C}-\mathrm{X}$ bonds should decrease in the order $\mathrm{C}-\mathrm{S}$ $\gg \mathrm{C}-\mathrm{C}>\mathrm{C}-\mathrm{O}$. Similarly, we find that the gauche torsion angles of $\mathbf{2 a}$ are found preferentially about C -Se bonds. More importantly, however, gauche torsion angles are displayed by 6 out of $6 \mathrm{Se}-\mathrm{C}-\mathrm{Se}-\mathrm{C}$ sequences but only by 3 out of $6 \mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{C}$ sequences. We take the marked preference by the former as evidence for the existence of a selenium anomeric effect, which thus appears to be the dominating influence on the overall molecular conformation. ${ }^{51}$ The unimposed intermolecular Se ...Se contact might contribute to stabilizing the molecular conformation of $\mathbf{2 a}$.

In its generalized form, the anomeric effect refers to the torsional preferences about the $\mathrm{C}-\mathrm{X}$ and $\mathrm{C}-\mathrm{Y}$ bonds in $\mathrm{RX}-$ $\mathrm{CH}_{2}-\mathrm{YR}^{\prime}$ molecules. The conformations increase in energy in the sequence gauche, gauche $7<$ anti, gauche $8<$ anti, anti 9 (Figure 8). The behavior has been rationalized by a perturbational molecular orbital (PMO) treatment that focuses on the stabilizing orbital interactions between the p-type nonbonding orbitals on X and $\mathrm{Y}, n_{\mathrm{X}}$ and n_{Y}, with the acceptor orbitals, $\sigma^{*}{ }_{\mathrm{C}-\mathrm{Y}}$ and $\sigma^{*}{ }_{\mathrm{c}-\mathrm{x}}$, respectively. ${ }^{52,53}$ Whereas both these interactions may be expressed in 7 , symmetry considerations dictate that only the $n_{X}-\sigma^{*} \mathrm{c}-\mathrm{Y}$ interaction is possible in $\mathbf{8}$ and neither interaction is possible in 9. These hyperconjugative interactions account for the existence of the endo and exo anomeric effect ${ }^{54,55}$ when the
(50) Anet, F. A. L.; Krane, J.; Dale, J.; Daasvatn, K.; Kristiansen, P. O. Acia Chem. Scand. 1973, 27, 3395.
(51) Contrast, for example, the conformation of 1,4,7,10,13,16-hexaoxacyclooctadecane: Dunitz, J. D.; Seiler, P. Acta Crystallogr., Sect. B: Struct. Sci. 1974, 30, 2739. Maverick, E.; Seiler, P.; Schweizer, W. B.; Dunitz, J. D. Ibid. 1980, 36, 615. See also ref 9.
(52) David, S.; Eisenstein, O.; Hehre, W. J.; Salem, L.; Hoffmann, R. J. Am. Chem. Soc. 1973, 95, 3806 .
(53) Wolfe, S.; Whangbo, M.-H.; Mitchell, D. J. Carbohydr. Res. 1979, $69,1$.
(54) Praly, J.-P.; Lemieux, R. U. Can. J. Chem. 1987, 65, 213.
$\mathrm{RX}-\mathrm{CH}_{2}-\mathrm{YR}^{\prime}$ moiety is incorporated into a heterocyclohexane (Figure 8).

We interpret the preference for gauche, gauche arrangements in the $\mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{Se}-\mathrm{C}$ units of $\mathbf{2 a}$ as a manifestation of a selenium anomeric effect, despite questions recently raised as to the existence of significant anomeric interactions involving second and lower row elements. ${ }^{56,57}$ A strong analogous preference for gauche, gauche arrangements in $\mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{C}$ fragments has been noted in oxygen coronands containing 1,3 -dioxa groupings. ${ }^{42}$
The solid-state CP-MAS ${ }^{77}$ Se NMR spectrum of $\mathbf{2 a}$ displays six peaks of equal area (Table XI). The two resonances at lowest field have been assigned to $\operatorname{Se}(7)$ (326.5 ppm) and $\mathrm{Se}(9)$ (264.3) on the basis of (1) the broader line width of the resonance at 264 ppm which we associate with more rapid relaxation due to the greater average thermal motion of $\mathrm{Se}(9)^{39}$ and (2) their relatively large mutual spin-spin coupling constant, ${ }^{2} J_{\text {Se-se }}=128 \mathrm{~Hz}$. These atoms display the largest $\mathrm{C}-\mathrm{Se}-\mathrm{C}$ and $\mathrm{Se}-\mathrm{C}-\mathrm{Se}$ bond angles in the molecule, implying maximal s-orbital character in the connecting bonds. The latter point is of significance since expression of the anomeric effect is predicted to open up the $\mathrm{X}-\mathrm{C}-\mathrm{Y}$ bond angle. ${ }^{58,59}$ Apparently, the $\mathrm{Se}-\mathrm{C}-\mathrm{Se}$ anomeric effect is maximized in the $\mathrm{Se}(7)-\mathrm{C}(8)-\mathrm{Se}(9)$ fragment relative to the other two similar units. It is interesting to note that the largest gauche torsion angle ($94.4(4)^{\circ}$) is found in the former unit. This result, together with the corresponding result for 1a, suggests that the optimum geometry required for expression of $n_{\mathrm{Se}}-\sigma^{*} \mathrm{C}$-se anomeric interactions is one involving "gauche" torsion angles that are near $90^{\circ} .{ }^{53}$
The solid-state CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum of 2a displays nine resolved peaks of relative areas 1:3:1:2:1:1:1:1:1 (Table XI) and is consistent with the presence of 12 unique carbon sites in the asymmetric unit. As in the case of 1a, we suggest the assignment of the three highest field peaks to the three methylene carbon atoms of the $\mathrm{Se}-\mathrm{C}-\mathrm{Se}$ units. ${ }^{23}$

Attempts to confirm the molecular conformation of 2 a in solution by ${ }^{77} \mathrm{Se}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy at 145 K were unsuccessful because of rapid site exchange. Similar experiments with the β-gem-dimethyl derivative $\mathbf{2 b}$, in which the barriers to pseudorotation were expected to be higher, were unfortunately frustrated by problems of solubility.
The molecules of 3 , have a [3535] rather than the [4444] "ideally unstrained" conformation in which all Se atoms could occupy corners, that is, all $\mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{C}$ sequences would have gauche torsion angles. The tendency for large cycloalkane rings to favor slightly strained, compact quadrangular conformations over the more open, unstrained ones has been noted by Dale. ${ }^{31}$

The CP-MAS ${ }^{77}$ Se NMR spectrum of 3 shows five resolved resonances whose relative intensities are $2: 1: 1: 1: 1$. The spectrum is consistent with the presence of three molecules in the asymmetric unit, each having approximate 2 -fold rotational symmetry. Unfortunately, the CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum shows two broad complex envelopes with only some clearly resolved resonances
(55) Booth, H.; Khedhair, K. A.; Readshaw, S. A. Tetrahedron 1987, 43, 4699.
(56) Schleyer, P. v. R.; Jemmis, E. D.; Spitznagel, G. W. J. Am. Chem. Soc. 1985, 107, 6393.
(57) Anet, F. A. L.; Kopelevich, M. J. Chem. Soc., Chem. Commun. 1987, 595.
(58) Pinto, B. M.; Schlegel, H. B.; Wolfe, S. Can. J. Chem. 1987, 65, 1658.
(59) Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1987, 109, 7362.
(Table XI), making it difficult to comment further.
The conformation of $\mathbf{4}$ contrasts with that of 3 as well as the hydrocarbon analogue, cyclotetracosane, which adopts a compact [3939] quadrangular conformation. ${ }^{60,61}$ This difference may be attributable to the preference for gauche torsion angles about $\mathrm{Se}-\mathrm{C}$ bonds. It is thus noteworthy that every $\mathrm{Se}-\mathrm{C}$ bond has a gauche $\mathrm{C}-\mathrm{Se}-\mathrm{C}-\mathrm{C}$ torsion angle.

The CP-MAS ${ }^{77}$ Se NMR spectrum of 4 shows only three resonances of equal intensity, consistent with the presence of a single conformer having crystallographic inversion symmetry. Also consistent is the CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum, which shows five resolved resonances in a ratio of 2:3:1:1:2, accounting for the nine unique carbon sites in the asymmetric unit.

The placement of the selenium atoms in corner positions of 5 confirms the preference for the gauche torsion angles to occur about $\mathrm{Se}-\mathrm{C}$ bonds. Of the structures reported here this is the only one to conform to the "diamond lattice" formalism.

The CP-MAS ${ }^{77}$ Se NMR spectrum of 5 shows two peaks, as expected because of the crystallographic center of inversion. The CP-MAS ${ }^{13} \mathrm{C}$ NMR spectrum shows four resolved resonances in the ratio of $1: 1: 2: 1$, consistent with the presence of five unique carbon sites in the molecule.

The potential ability of coronands $\mathbf{3 , 4}$, and $\mathbf{5}$ to serve as complexing agents for soft metal ions is currently under investigation, compounds 1a, 1b, 2a, and 2b being considered as less likely candidates owing to restrictions imposed by the connectivities in the latter derivatives. In this regard, several complexes of 3 and
(60) Groth, P. Acta Chem. Scand. 1979, A33, 199
(61) Ando, I.; Yamanobe, T.; Sorita, T.; Komoto, T.; Sato, H.; Deguchi, K.; Imanari, M. Macromolecules 1984, 17, 1955. Yamanobe, T.; Sorita, S.; Ando, I.; Sato, H. Makromol. Chem. 1985, 186, 2071.

4 with $\mathrm{Cu}(\mathrm{I}), \mathrm{Cu}(\mathrm{II}), \mathrm{Ag}(\mathrm{I})$, and $\mathrm{Pd}(\mathrm{II})$ ions have been prepared. ${ }^{62}$

Conclusions

All the structures display a preference for gauche torsion angles about the $\mathrm{Se}-\mathrm{C}$ bonds. The crystal structure of $\mathbf{2 a}$ as well as the solution conformation of $\mathbf{1 a}$ and $\mathbf{1 b}$ show, in addition, a bias toward gauche torsion angles about the bonds to the "anomeric" carbon atoms. The crystal structures of $\mathbf{1 a}$ and $\mathbf{3}$ show that these preferences can be overridden by other effects such as crystal packing and the tendency of the larger rings to adopt compact conformations (rather than more open, ideally unstrained conformations). The largest rings $\mathbf{2 a}$ and $\mathbf{4}$ display compact conformations that feature sequences of gauche torsion angles of the same sign, in contrast to the large, even-membered cycloalkanes, which feature two long parallel sides composed of sequences of anti torsion angles.

Acknowledgment. We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

Supplementary Material Available: Table of experimental details for the X-ray structural analysis of 3, table of atomic coordinates and isotropic or equivalent isotropic thermal parameters for 3, tables of hydrogen atom coordinates and isotropic thermal parameters for 1a, 2a, 4, and 5, tables of anisotropic thermal parameters for Se and C atoms of 1a, 2a, 4, and 5, table of anisotropic thermal parameters for Se atoms of 3 , tables of bond distances, bond angles, and torsion angles for 3 (22 pages); tables of observed and calculated structure factors for $\mathbf{1 a}, \mathbf{2 a}, \mathbf{3}, \mathbf{4}$, and 5 (67 pages). Ordering information is given on any current masthead page.
(62) Gu, J.-H.; Pinto, B. M., unpublished results.

Properties and Reactivity of Metallocarboxylates. Characterization of Aquobis(ethylenediamine)(hydroxycarbonyl)cobalt(III) $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{en})_{2} \mathrm{Co}(\mathrm{C}(\mathrm{O}) \mathrm{OH})\right]^{2+}$ and Its Ethyl Ester, trans- $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{C}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{5}\right)\right] \mathrm{PF}_{6}$

Nêstor E. Katz, ${ }^{1}$ David J. Szalda, ${ }^{2}$ Mei H. Chou, Carol Creutz, ${ }^{*}$ and Norman Sutin
Contribution from the Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973. Received October 31, 1988

Abstract

The title metallocarboxylate, first described by Vaudo et al. (J. Am. Chem. Soc. 1972, 94, 6655) has been further investigated, and its ethyl ester, prepared. Crystals of the ester (ethoxycarbonyl) $\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)(\mathrm{C}-\right.$ (O) $\mathrm{OC}_{2} \mathrm{H}_{5}$) PF_{6} are monoclinic: space group $P 2_{1} / c$ with $a=9.077$ (1) $\AA, b=16.375$ (2) $\AA, c=12.919$ (2) $\AA, \beta=92.15$ (1) ${ }^{\circ}, V=1918.9$ (7) $\AA^{3}, Z=4$, and refined to a final R value of 0.079 . The ethylenediamine ligands are trans to one another ($\mathrm{Co}-\mathrm{N}$ ave, 1.944 (13) \AA) with axial ligands $\mathrm{CF}_{3} \mathrm{CO}_{2}^{-}\left(\mathrm{Co}-\mathrm{O}, 2.046\right.$ (7) \AA) and $-\mathrm{C}(\mathrm{O}) \mathrm{OC}_{2} \mathrm{H}_{5}^{-}(\mathrm{Co}-\mathrm{C}, 1.922$ (9) $\AA ; \mathrm{C}=\mathrm{O}$ 1.196 (9) $\AA, \nu_{\mathrm{C}}=1645 \mathrm{~cm}^{-1}$). The aquo hydroxycarbonyl complex (UV-vis: $\lambda_{\max }, \mathrm{nm}\left[\epsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right] 410$ [125], 314 sh [580], 262 [5200]) is a dibasic acid with $\mathrm{p} K_{1}=2.5 \pm 0.5$ and $\mathrm{p} K_{2}=3.7 \pm 0.5$ at $15^{\circ} \mathrm{C}$ and 0.5 M ionic strength and, at $\mathrm{pH}>$ 5 , is present as the neutral hydroxy-oxycarbonyl complex $\mathrm{Co}(e n)_{2}(\mathrm{OH})\left(\mathrm{CO}_{2}\right)$ (UV-vis: 450 [100], 357 [245], 318 [280], 266 [9000]). The aquo ethoxycarbonyl complex (UV-vis: 424 [113], 320 sh [210], 264 [5100]) is a monobasic acid with $\mathrm{p} K_{\mathrm{a}}=8.7 \pm 0.2$ at $25^{\circ} \mathrm{C}$ and 0.5 M ionic strength and, at high pH , is converted to $\mathrm{Co}(\mathrm{en})_{2}(\mathrm{OH})\left(\mathrm{CO}_{2} \mathrm{Et}\right)^{+}(\mathrm{UV}$-vis: 430 [159], 329 sh [260]). The ethoxy function is hydrolyzed very slowly in the latter complexes ($\mathrm{pH}, k_{\mathrm{obsd}}: 1,2.5 \times 10^{-6} \mathrm{~s}^{-1}$; $7,<2 \times 10^{-7} \mathrm{~s}^{-1} ; 13,3 \times 10^{-6} \mathrm{~s}^{-1}$) to yield ethanol and the hydroxy- or oxycarbonyl, depending upon the pH . At $\mathrm{pH}>0$ the oxy- or hydroxycarbonyl complex undergoes decomposition through the singly protonated $\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CO}_{2}\right)^{+}$, exhibiting a rate maximum ($k_{\text {obsd }} \approx 3 \times 10^{-3} \mathrm{~s}^{-1}, 25^{\circ} \mathrm{C}$) at ca. pH 3.2 .

Metallocarboxylate (oxycarbonyl) complexes play an important role in diverse reactions of catalytic importance: ${ }^{3}$ Under water-gas
shift conditions, ${ }^{4}$ they may be formed by nucleophilic attack of hydroxide ion on a metal carbonyl. In this context, the rate and

[^0]: * Author to whom correspondence should be addressed.

[^1]: (1) Preliminary accounts of portions of this work have been published: Pinto, B. M.; Batchelor, R. J.; Johnston, B. D.; Einstein, F. W. B.; Gay, I. D. J. Am. Chem. Soc. 1988, 110, 2990. Pinto, B. M.; Johnston, B. D.; Batchelor, R. J.; Gu, J.-H. J. Chem. Soc., Chem. Commun. 1988, 1087. Pinto, B. M.; Johnston, B. D.; Batchelor, R. J.; Einstein, F. W. B.; Gay, I. D. Can. J. Chem. 1988, 66, 2956.
 (2) (a) Host Guest Complex Chemistry I. Top. Curr. Chem. 1981, 98 , Vogtle, E., Ed.; II, 1982, 101 , Vogtle, E., Ed.; III, 1984, 121, Vogtle, E., Weber, E., Eds.; Springer-Verlag: Berlin. (b) Host-Guest Complex Chemistry-Macrocycles-Synthesis, Structures, Applications; Vogtle, F., Weber, E., Eds.; Springer-Verlag: Berlin, 1985.
 (3) For a recent review, see: Cooper, S. R. Acc. Chem. Res. 1988, 21, 141 See also: Schröder, M. Pure Appl. Chem. 1988, 60, 517.

[^2]: (21) Davies, E. K. snoopl Plot Program, Chemical Crystallography Laboratory, University of Oxford, Oxford, England, 1985.
 (22) Clarembeau, M.; Cravador, A.; Dumont, W.; Hevesi, L.; Krief, A.; Lucchetti, J.; Van Ende, D. Tetrahedron 1985, 41, 4793.
 (23) Pinto, B. M.; Johnston, B. D.; Nagelkerke, R. Heterocycles 1989, 28, 389.
 (24) Backer, H. J.; Winter, H. J. Recl. Trav. Chim. Pays-Bas 1937, 91 , 2703; Reich, H. J.; Hoeger, C. A.; Willis, W. W. Jr. Tetrahedron 1985, 41 4771. Abel, E. A.; Mittel, P. K.; Orell, K. G.; Sik, V. J. Chem. Soc., Dalton Trans. 1985, 1569.
 (25) Lakshmikantham, M. V.; Cava, M. P. J. Org. Chem. 1980, 45, 2632.
 (26) We are currently investigating alternate synthetic routes to selenium coronands involving stepwise syntheses. In addition, the optimization of yields of the reactions by studying the effects of high-dilution conditions ${ }^{27}$ and the effects of cations such as cesium ${ }^{28}$ are under way.
 (27) For a review see: Rossa, L.; Vogtle, F. Synthesis of Medio- and Macrocyclic Compounds by High Dilution Techniques; Top, Curr. Chem. 1983, 113 ; Vogtle, F., Ed.; Springer-Verlag: New York.
 (28) Dijkstra, G.; Kruizinga, W. H.; Kellogg, R. M. J. Org. Chem. 1987, 52, 4230; and references therein.
 (29) Clive, D. L. J.; Denyer, C. V. Chem. Commun. 1973, 253. Chan, T. H.; Finkenbine, J. R. Tetrahedron Lett. 1974, 2091. Van Ende, D.; Krief, A. Tetrahedron Lett. 1975, 2709. Lakshmikantham, M. V.; Cava, M. P. J. Org. Chem. 1976, 4l, 879.

[^3]: (31) Dale, J. J. Chem. Soc. 1963, 93. Dale, J. Top. Stereochem. 1976, 9, 199.
 (32) Dunitz, J. D.; Shearer, H. M. M. Helv. Chim. Acta 1960, 43, 18. (33) Robinson, G. H.; Sangokoya, S. A. J. Am. Chem. Soc. 1988, 110 , 1494.
 (34) Groth, P. Acta Chem. Scand. 1978, A32, 279.

[^4]: (35) DeSimone, R. E.; Glick, M. D. J. Am. Chem. Soc. 1976, 98, 762.

[^5]: (37) Sandstrom, J. Dynamic NMR Spectroscopy; Academic: New York, 1982; Chapter 7.
 (38) Borgen, G.; Dale, J. J. Chem. Soc., Chem. Commun. 1974, 484.

